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Abstract

Quantitative scholarship on civil conflict still largely relies upon the ethnic group as
the foundation for measures of politically-relevant diversity and, in particular, identity-
based political inclusion. However, ethnicity remains notoriously difficult to measure:
even cutting-edge analyses are subject to the issues of intra- and inter-ethnic variation in
identity salience that plagued earlier work. Here I propose a new way to measure identity-
based exclusion. Specifically, I use latent variable models to combine data from both the
Ethnic Power Relations Project, which uses the demographic size of politically-relevant
ethnic groups to operationalize inclusion; and the Varieties of Democracy Project, which
measures overall identity-based inclusion without directly accounting for demographic
group size. The latent variable models combine insights from both measurement ap-
proaches, ameliorating concerns about using either strategy in isolation. In addition to
providing cross-nationally cohesive data on identity-based exclusion for future work, these
models provide a framework for scholars to build their own theoretically-driven models
of politically-relevant diversity and inclusion.



A wide body of literature links the exclusion of politically-relevant ethnic groups to im-

portant social-scientific outcomes, particularly civil conflict (Cederman, Wimmer & Min

2010, Cederman, Gleditsch & Buhaug 2013, Cederman, Hug, Schädel & Wucherpfennig

2015). In this tradition, scholars first enumerate the universe of politically-relevant ethnic

groups present at a given level of analysis, then determine the degree and form in which

these groups are excluded or included. However, as Kanchan Chandra (2006, 2012) has

detailed, traditional conceptualizations of ethnic identity yield contradictory criteria for

membership in an ethnic group, and belie significant intra- and inter-ethnic variation

in the attributes that make some identities more salient than others. Exclusion itself

may vary substantially within and across groups, often in correlation with the salience of

identity. Measures of exclusion based on ethnic group demographics may therefore have

difficulty accounting for the actual level of identity-based exclusion present at any given

level of analysis.

An alternative approach to measuring identity-based exclusion involves coding its

overall prevalence within a society, without first enumerating the groups it concerns.

Such an approach avoids making assumptions about the specific social identities relevant

to identity-based inclusion, as well as the degree to which members of these identity

groups face similar levels of inclusion. By avoiding these assumptions, such data may 1)

better capture the extent of exclusion within and across groups and 2) be more sensitive

to changes on these metrices. However, such an approach has its own disadvantages.

First, the demographic strength of cohesive groups is important in determining whether

or not exclusion leads to outcomes of interest. By not explicitly incorporating group

demographics into the measurement process, this approach cannot account for this im-

portant element of identity politics. Second, the absence of clear anchoring on ethnic

demographics exacerbates concerns about cross-national comparability in the coding of

this phenomenon.

In this paper, I use Bayesian latent variable modeling techniques to combine these two

approaches, leveraging the strengths of both to provide longitudinally and cross-nationally

comparable measures of identity-based exclusion. To do so, I first conceptually and

empirically illustrate the advantages and disadvantages of both existing approaches, using

the current gold standards in the literature: Ethnic Power Relations (EPR) and Varieties

of Democracy (V–Dem). The EPR Project measures the demographic size of relevant

identity groups in a territory, and explicitly focuses on ethnic groups. In contrast, the V–

Dem data collection process does not involve enumerating groups. Instead, expert coders

use Likert scales to report the general level of identity-based inclusion; these data are then

aggregated using a Bayesian Ordinal Item Response Theory model (Pemstein et al. 2018).

As expected, I find that V–Dem and EPR data strongly correlate and generally reveal

similar cross-national and within-country trends in identity-based inclusion. However,

the analyses also reveal the V–Dem data provide nuanced information about change
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within countries, while EPR data provide rougher—but potentially more cross-nationally

comparable—information.

I build on insights from these analyses to develop the two latent variable models. The

first model directly combines the EPR and V–Dem data on elite-level political inclusion,

essentially using the cross-nationally demographically-consistent EPR data to increase

the cross-national comparability of the the V–Dem data. The second model expands

on this analysis to incorporate data on the ethnic fractionalization and polarization of

different country-year observations, as well as the day-to-day discrimination against group

members. The end result of these analyses are two cross-nationally comparable and

nuanced indicators of this vital concept, both of which evince high levels of content and

construct validity in the framework of Adcock & Collier (2001). The models I deploy in

this analysis are also readily modifiable, providing scholars the opportunity to build on

them as new data become available, or to better fit their theories of identity politics.

1 Measuring identity with groups

Many measures of identity-based diversity and exclusion—particularly in the sphere

of conflict research—use the ethnic group as the foundation for their measures of la-

tent identity-based conflict potential (Fearon & Laitin 2003, Montalvo & Reynal-Querol

2005, Esteban, Mayoral & Ray 2012, Vogt, Bormann, Rüegger, Cederman, Hunziker &

Girardin 2015). There are important theoretical reasons to do so. For example, re-

searchers associated with the prominent Ethnic Power Relations (EPR) project argue

that measuring ethnic groups is important “because the nation-state itself relies on eth-

nonational principles of political legitimacy.” As a result, members of ethnic groups that

have power in a society have access to material and symbolic resources denied to members

of other groups (Wimmer, Cederman & Min 2009, 321). Members of excluded groups

may resort to violence or other forms of conflict to gain access to these resources. Demo-

graphics are thus of clear importance in this context: countries and regions in which a

high proportion of the population belongs to an excluded group(s) are those most likely

to outcomes like civil conflict.

Despite the clear theoretical connection between ethnic groups and political power—

and thus ethnic demographics and outcomes of social-scientific interest—there is sub-

stantial disagreement about what constitutes ethnic identity, not to mention how best to

operationalize this concept cross-nationally. These disagreements indicate that measures

of exclusion based on ethnic demographics may not always accurately reflect the level

of exclusion within a society, creating problems for analyses that use these data on the

right-hand side.
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1.1 Heterogeneity between and within groups

A fundamental assumption of datasets that build on ethnic groups is that co-ethnicity

imbues all ethnic groups and members of these groups with some degree of common

identity that allows them to act collectively. This assumption is problematic: not all

ethnic groups are equally cohesive, and not all members of ethnic groups equally identify

with the group (Chandra 2006, Chandra 2012). A technique for dealing with this problem

is to focus on “politically-relevant” ethnic groups, or groups that evince a sufficient degree

of common identity to collectively engage in political behavior (Posner 2004, Wimmer,

Cederman & Min 2009, Cederman, Wimmer & Min 2010, Vogt et al. 2015), in essence

rendering them politically exchangeable. However, politically relevant groups likely vary

in the content of their identity, and members of these groups vary in their attachment to

the group. For example, a group defined by inherited physical traits may have a different

level of cohesion than a group defined by religious preferences. At the individual-level,

members of the religiously-defined group who are not themselves religious may have

different political preferences than members who are. In other words, while both groups

may have acted collectively to affect politics in the past, there is no guarantee that they

will behave similarly—or be statistically exchangeable—at any point in time other than

that in which they were engaging in political behavior.

Scholars who use data sets that include politically relevant ethnic groups are aware of

this problem, and attempt to mitigate it in a variety of ways. Specifically, cutting-edge

datasets incorporate a variety of characteristics of both groups and group members into

their analyses. For example, some analyses incorporate the degree to which these dimen-

sions are cross-cutting or shared by members of the group in question (Selway 2011, Bor-

mann, Cederman & Vogt 2015), or weight the groups by different characteristics. How-

ever, if traits other than politically-relevant ethnic identity are of importance to political

mobilization, a focus on the ethnic group risks 1) artificially dividing populations that face

similar forms of inclusion and 2) ignoring members of other groups that may share these

traits and thus have similar political proclivities as the members of the delineated groups.

For example, consider a case in which there are two equally-sized ethnic groups (A and

B) and a religious cleavage (1 and 2) that divides the population into a religious majority

and minority: the identities A1, B1 each represent 33% of the population; the identities

A2 and B2 each represent 17% of the population. Group A is represented in the execu-

tive branch of the government, and thus both A1 and A2 are politically included by the

standards of the EPR project; Group B (B1 and B2) has no representation. However,

the religious cleavage is in fact the identity characteristic most salient for representa-

tion, with Group 1 enjoying the most access to power. Members of the included ethnic

group who are of the stigmatized religious group (A2) enjoy no access to government-

distributed material resources, while members of the excluded ethnic group who are of
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the high-status religious group (B1) have the same access as their co-religionists (A1). In

principle, weighting the distance between these groups by religion would add nuance to

the largely-misleading ethnic story, but would still be misleading because religion—not

ethnicity weighted by religion—is the relevant identity attribute for exclusion.1

Equally importantly, these data sets generally assume that the traits they include as

covariates related to the group are time-invariant. For example, if a group is linguistically

distinct from a polity’s dominant group at time t, these datasets generally assume that

the group remains linguistically distinct at time t+ 50. Given that processes of linguistic

assimilation are relatively common, this assumption is problematic: if linguistic differ-

ences lead to exclusion, a group that linguistically assimilates over the course of 50 years

will no longer face exclusion.

1.2 Selection of ethnic groups

Scholars constructing datasets that use ethnic groups as their basis must first decide what

constitutes an ethnic group. As a large body of work illustrates, there is no clear consensus

on either what constitutes an ethnic group or how to consistently measure these groups

cross-nationally (Fearon 2003, Chandra 2006, Chandra 2012, Marquardt & Herrera 2015,

Hale 2017). Moreover, all identity groups are subject to constant contestation and change

(Abdelal, Herrera, Johnston & McDermott 2009, Brubaker 2002).

On one level, this concern is about the inferences researchers can draw from large

scale group-based datasets: as Jenne and Bochsler note, “quantitative researchers must

bracket questions about the origins, functions or boundaries of of group identies in order

to create large-N databases” (Bochsler, Green, Jenne, Mylonas & Wimmer 2021). On

another level, cross-national measures of identity-based exclusion that use the ethnic

group as their foundation risk misrepresenting the actual level of identity-based exclusion

within a society. To build on Fearon’s classic example of measuring ethnicity in Somalia

(2003), if clan membership provides the basis for inclusion in a country, but clans are

not considered “ethnic,” then a country with widespread clan-based exclusion would be

incorrectly coded as having no identity-based exclusion. As Marquardt & Herrera (2015)

note, different conceptualizations of what constitutes “ethnic” can result in drastically

different enumerations and thus drastically different country-level statistics.

Adding a temporal component to this argument makes the problem even more difficult.

Since the content of ethnic identities can change over time, formerly excluded groups can

become included and groups can merge and disaggregate. These processes can also occur

concurrently: Irish Americans became “White” as their political power (i.e. level of

1In this context, religious identity should perhaps determine the relevant ethnic groups in this society.
However, this line of reasoning makes analyzing the causal role of identity on any political outcome
impossible: if inclusion or exclusion is the primary criterion for identifying ethnicity, then any attempts
to investigate the relationship between ethnicity and inclusion are wholly circular.
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inclusion) increased (Ignatiev 1995). While an appropriately fine-grained dataset can

model these changes, determining precisely when these changes occurred is difficult. Is

“White” more politically relevant than “Irish” for all Irish Americans in all political

spheres, and in what year did it become so?

Datasets that use politically-relevant ethnic groups face an additional issue: selection

bias (Hug 2003, Hug 2013, Birnir, Wilkenfeld, Fearon, Laitin, Gurr, Brancati, Saideman,

Pate & Hultquist 2014). Specifically, they explicitly select only identity groups that

have become politically salient—not the universe of potential identity groups—and the

process of ethnic group boundary making may itself be a function of conflict or exclusion

(Brubaker 2002).2

2 Measuring identity without groups

An alternative approach for measuring socially relevant identity is to analyze the preva-

lence of identity-based inclusion in a society. Instead of first enumerating the ethnic

groups in a state (politically relevant or irrelevant), then determining whether or not

members of each group are excluded, a scholar could determine the degree to which so-

cial identity overall is linked to inclusion in a society. A reasonable implementation of this

approach would solve—at least to some extent—the problems with measuring exclusion

with ethnic groups, though it would raise issues of its own.

2.1 Advantages

2.1.1 Heterogeneity between and within groups

This approach makes no assumptions about the characteristics of groups being excluded or

the degree to which exclusion is consistent across group members. As a result, it sidesteps

many of these concerns with regard to measuring exclusion at the group level. However,

this approach does rely on a strong assumption that the fact of inclusion renders all groups

and individuals exchangeable in terms of their political proclivities. In principle, this

assumption is problematic. If exclusion is easily remedied by some groups and members

of groups, then the distribution of inclusion will potentially be unstable across time as

formerly excluded groups (and members of groups) become included. For example, if

assimilation is an option for some members of stigmatized groups, but not for others,

then those who can assimilate may do so and thus exhibit different political preferences

from those who cannot.

2Technically, even measures of ethnic groups that do not use political relevance as a criteria are
subject to this bias, since there is an essentially infinite number of potential ethnic groups and, even
using relatively lax criteria, only “relevant” groups are counted.
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In practice, an appropriately granular time-series analysis can account for this problem

to some extent: those groups and group members that can easily evade inclusion would

no longer count toward overall polity-level inclusion, should they assimilate or otherwise

cease to exist. Indeed, this potential to vary over time is an advantage of a focus on

inclusion writ large, as opposed to the degree to which ethnic groups are included: group-

based data sets assume that the political relevance of ethnic groups is largely fixed, and

their traits largely constant. In contrast, a correctly-measured overall inclusion variable

would account for changes in the relevance of the traits that lead to inclusion, as well as

the size of the groups that exhibit these traits.

2.1.2 Selection of ethnic groups

Since there is no need to explicitly enumerate ethnic groups, measuring identity-based

inclusion directly drastically ameliorates the concern of omitting possibly relevant pop-

ulations. Similarly, measuring identity-based inclusion sidesteps the circular reasoning

often involved in creating politically-relevant group data sets. As previously discussed,

the political inclusion or exclusion of a group can increase the salience of a group’s com-

mon identity, increasing the likelihood it is considered 1) a cohesive unit and 2) politically

relevant. Processes of inclusion thus define the universe of groups, which in turn defines

the degree to which inclusion occurs. By not explicity defining the universe of groups,

directly measuring identity-based inclusion avoids this issue.

2.2 Disadvantages

2.2.1 Demographics matter

A primary disadvantage of measuring identity-based exclusion without groups is that

groups—and demographics—matter. For example, a common ethnic identity facilitates

collective action (Hale 2008). As a result, a society with great exclusion of a demograph-

ically small population may have lower odds of conflict onset than one with moderate

exclusion of demographically large population. A measure of identity-based exclusion

that does not account for this distinction would therefore miss a highly important aspect

of identity politics.3

3It is worth noting that prominent scholarship argues that researchers should primarily investigate
identity-based exclusion and exclusion-related outcomes at the group level—not the region- or country-
level (Cederman, Gleditsch & Buhaug 2013). Among work that does analyze conflict at the region- or
country-level, there is clear evidence that some measures of demographics correlate with the probability
of conflict onset, though a vibrant discussion about the correct way to parameterize these demographics
continues (Bochsler et al. 2021). While measures of fractionalization have become less popular, measures
of polarization or demographic strength (e.g. the proportion of the population that is excluded, the
proportion of the population belonging to the largest excluded group, the number of excluded groups)
still enjoy widespread use.
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2.2.2 Cross-national comparability

Accurately measuring levels of identity-based exclusion across time requires in-depth

substantive and theoretical expertise. Coders measuring the extent of identity-based

exclusion must 1) identify individuals likely excluded for identity-based characteristics,

2) identify forms of exclusion, 3) combine these two aspects to determine who is excluded

and how, and 4) estimate the overall prevalence of 3) in a coding unit. Performing all

four tasks requires great contextual and conceptual knowledge, essentially necessitating

expert-coding. Equally importantly, it is unlikely that a single coder could accurately

code more than several cases, regardless of their level of expertise. An expert on identity-

based exclusion in Kazakhstan is likely unaware of what such exclusion looks like in

Ethiopia and, in fact, might inaccurately measure this concept in Ethiopia by using

their region-specific identity politics knowledge as a reference point. As a result, this

measurement exercise likely requires different sets of experts coding different cases. As

Marquardt (2020) details, such a scenario presents substantial concerns for cross-national

comparability in the context of measuring identity-based exclusion: different experts

may perceive scales differently—a phenomenon known as differential item functioning, or

DIF—and this scale perception may systematically vary across countries/regions. As a

result, comparing estimates from one country to another could be misleading.

3 The data

The previous discussion yields several expectations about how the two approaches to

measuring identity-based exclusion and inclusion should compare to each other. Since

both approaches are intended to measure the same concept, they should correlate. How-

ever, a group-based approach should provide rougher estimates of changes in the con-

cept than the direct approach for two main reasons. First, the group-based approach

is less able to track changes in the relative salience of different identity categories—as

well as salience of exclusion itself—than the direct measurement approach. Second, the

group-based approach assumes that changes in a group’s status in elite politics would

affect all group members equally, leading to jumps in levels of inclusion and exclusion as

demographically-large groups’ status changes.

To compare and contrast the two different approaches to measuring identity-based in-

clusion, I use measures from the Ethnic Power Relations (EPR) data set and the Varieties

of Democracy (V–Dem) data set.

3.1 Group-based exclusion: EPR

The Ethnic Power Relations (EPR) data set uses regional experts to determine both the

politically relevant ethnic groups in the society, as well as whether or not they are ex-
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cluded; in cases of divergent expert opinions, additional experts are consulted (Cederman,

Wimmer & Min 2010, Vogt et al. 2015). The resulting data thus consists of a list of polit-

ically relevant groups in a country, with additional data regarding the demographic size

of the group and their location in the country’s political constellation (i.e. the degree

and manner in which they are included or excluded). For the purposes of EPR, political

inclusion represents representation at the executive level of politics: if a member of a

given group has an executive-level appointment (e.g. as president or prime minister, or

cabinet member) then the entire group is coded as included. Otherwise, the group is

excluded.4

EPR provides several aggregations of the group-year level data to the country-year

level. In these analyses I focus on the proportion of the politically-included population

over the entire population, since this measure is the conceptually closest to the V–Dem

data.5

3.2 Exclusion without groups: V–Dem

The V–Dem project uses a network of over 3,000 experts to code a variety of vari-

ables related to democracy, including those related to identity group political inclusion

(Coppedge, Gerring, Lindberg, Skaaning, Teorell et al. 2017a). Each expert is assigned

one of 11 surveys related to their area of substantive expertise; each survey includes

a number of questions with Likert-scale or numeric responses. Generally five or more

experts code each country; V–Dem policy is to have a majority of local experts code

country years except when impossible (e.g. for countries like North Korea (Coppedge,

Gerring, Lindberg, Skaaning, Teorell et al. 2017b)). Given the previous discussion about

the importance of deep country-knowledge for measuring identity-based exclusion, the

presence of many local experts is clearly essential.

To analyze the specific indicator of political inclusion, 1,100 experts provided re-

sponses to the question “Is political power distributed according to social groups?” (Fig-

ure 1). There are five possible ordinal responses, which correspond to situations ranging

from institutionalized and monopolized minority control of the political system, to social

identity being largely irrelevant to politics. The question further defines a social group

as one defined by “caste, ethnicity, language, race, region, religion, or some combination

thereof,” and explicitly does not include socioeconomic status or sexual orientation. This

definition captures the groups encapsulated by a broad conceptualization of ethnicity.

However, it diverges sharply from ethnicity-based measures in that it does not attempt

to measure the groups in question, but rather the degree to which political power is

4The EPR coding schema includes different subcategories of inclusion and exclusion, which I do not
consider in this paper in the interest of simplicity.

5In countries where ethnicity is “irrelevant” to political power per the EPR coding, I code the entirety
of the population as included.

8



Figure 1: V–Dem identity-based inclusion question

Question: Is political power distributed according to social groups?
Clarification: A social group is differentiated within a country by caste, ethnicity, language,
race, region, religion, or some combination thereof. (It does not include identities grounded
in sexual orientation or socioeconomic status.) Social group identity is contextually defined
and is likely to vary across countries and through time. Social group identities are also
likely to cross-cut, so that a given person could be defined in multiple ways, i.e., as part of
multiple groups. Nonetheless, at any given point in time there are social groups within a
society that are understood - by those residing within that society – to be different, in ways
that may be politically relevant.
Responses:

0: Political power is monopolized by one social group comprising a minority of the
population. This monopoly is institutionalized, i.e., not subject to frequent change.

1: Political power is monopolized by several social groups comprising a minority of the
population. This monopoly is institutionalized, i.e., not subject to frequent change.

2: Political power is monopolized by several social groups comprising a majority of the
population. This monopoly is institutionalized, i.e., not subject to frequent change.

3: Either all social groups possess some political power, with some groups having more
power than others; or different social groups alternate in power, with one group
controlling much of the political power for a period of time, followed by another –
but all significant groups have a turn at the seat of power.

4: All social groups have roughly equal political power or there are no strong ethnic,
caste, linguistic, racial, religious, or regional differences to speak of. Social group
characteristics are not relevant to politics.

equally distributed among groups. In other words, it is directly measuring the degree

to which identity-based cleavages are relevant to political power in the society, not the

proportion of the population that is politically privileged over others due to their identity.

The broadness of this question is of special importance to the measurement of inclu-

sion: local experts are likely attuned to the identity-based cleavages in their country, and

this phrasing allows them to leeway to code exclusion based on these cleavages. While

this leeway is helpful for rigorously assessing the level of exclusion in a country, it also

increases concerns about cross-national comparability.

The V–Dem Project aggregates coder data using a Bayesian measurement model

which takes into account both clustered and expert-specific DIF, though the sparsity of

the data (i.e. generally six or fewer coders per observation and incomplete bridging in the

form of experts coding either additional cases or anchoring vignettes) potentially limits

the efficacy of the approach (Pemstein et al. 2018). In the following analyses I use the
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point estimate from this model (the median over the estimate’s posterior distribution) as

the V–Dem estimate of identity-based political inclusion.

3.3 Descriptive comparison of EPR and V–Dem variables

Figure 2 presents a scatterplot illustrating the relationship between the EPR and V–

Dem political inclusion variables across all country-years present in both data sets. Both

variables are scaled such that higher values represent greater inclusion, e.g. a score of

1 in the EPR data set indicates that all citizens are included in elite politics, at least

insofar as their identity group is concerned. This comparison reveals that while inclusion

is correlated across the two data sets, there are significant differences between them.

Perhaps most noticeably, there are many country-years which the EPR codes as having

perfect inclusion that the V–Dem codes as having very low levels of inclusion. There

are four potential main reasons for this difference. First, the V–Dem variables have

a less strict criteria for the relevant identity groups included in the measurement. As

a result, V–Dem coders may be coding the exclusion of groups that EPR coders do

not consider politically relevant (e.g. tribes and clans in Somalia). Second, the V–Dem

variable is multidimensional, incorporating both the country’s rough demographic level of

inclusion, as well as the intensity of the inclusion. As a result, there will be discrepancies

between the two data sets if a relatively small proportion of a country’s population faces

extreme discrimination: EPR would code this case as largely inclusive due to the included

groups’ demographic dominance, while V–Dem experts would likely code it as having an

intermediate or low level of inclusion due to the severity of the exclusion. Finally, highly

exclusive societies that are also largely monoethnic (e.g. North Korea) are conceptually

difficult for V–Dem experts to code: all North Koreans are equally excluded from politics.

As a result, V–Dem experts can (and do) interpret such cases as being highly exclusive,

whereas the EPR project would code it as highly inclusive because ethnicity is irrelevant

to inclusion.

Table 1 investigates the cases with the largest discrepancies in detail, showing country-

year observations in which either 1) the observation is in the lowest quantile of EPR

observations and highest quantile of V–Dem observations (left column) or 2) the reverse

(right column). It is worth noting that there are some countries which V–Dem and EPR

coders universally consider to be of different types (highlighted in bold): for example,

V–Dem coders consider North Korea, Oman, Qatar and Swaziland to be highly exclusive

societies, while EPR considers them to be highly inclusive. These divergences all point

to differences in how V–Dem experts and EPR coders conceptualize relevant groups. For

example, Swaziland is likely a case of different perceptions of identity (EPR codes it

as monoethnic, while V–Dem coders may perceive different groups as being relevant).

Oman and Qatar are largely monoethnic countries in which large non-citizen populations
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Figure 2: Comparison of measures of inclusion
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Table 1: Country-years with large discrepancies between V–Dem and EPR coding

Low EPR, High V–Dem High EPR, Low V–Dem
Benin (1997-2006), Brazil (1989-1995,
2014-2016), Bhutan (2001-2017), Côte
D’Ivoire (2001-2003), Comoros (1999-
2002), Liberia (2006, 2014-2017), Nepal
(2008), Sierra Leone (2003-2006)

Burundi (1963-1966, 1990-1993), Haiti
(1947-1990, 2014-2017), North Korea
(1949-2017), Oman (1972-2017), Qatar
(1972-2017), Singapore (2017), Soma-
lia (1971-1992, 2013), Swaziland (1969-
2017), Tunisia (1957-2011), UAE (1972-
1994, 2006-2017), Venezuela (1950-1958),
Yemen (1996-2011, 2015-2016)

are excluded; while EPR excludes non-citizens from their coding scheme, V–Dem coders

likely incorporate these non-citizens into their coding.

Finally, Figure 3 provides a longitudinal analysis of V–Dem and EPR variables at

the country-level from 1946-2017, using the BRICS countries and the United States of

America as examples.6 Two things are readily apparent. First, EPR codings vary to

a much lesser extent within countries than do the V–Dem variables, evidence that the

more fine-grained approach of V–Dem is better able to capture nuanced changes in the

severity of exclusion than the blunt instrument of ethnic demographics. For example,

EPR codes the United States as being relatively inclusive from the beginning of the time

series to 2012 because Whites (the main included group) constituted a large demographic

majority. V–Dem data reflect the gradual improvement in minority political power from

a very low level in the 1940s to a relatively high level at present (with a decline in recent

6I convert V–Dem output to a 0-1 scale using the cumulative distribution function of the normal
distribution.
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Figure 3: Comparison of EPR and V–Dem data
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years). Similarly, while the election of Barack Obama to the post of president marks the

inclusion of African Americans into politial power according to EPR coding criteria—and

thus a marked increase in inclusion in the United States—the V–Dem data do not show

a large de facto shift.

Second, in five cases (Brazil, India, Russia, South Africa and the United States),

general trends are roughly similar between the V–Dem and EPR codings, though the

V–Dem data tend to show more nuanced changes than the periods of stasis followed by

rapid change observable in the EPR data, which are due to changes in the demographic

composition of executive-level posts leading to swathes of the population changing from

excluded to included (this phenomenon is particularly notable in Brazil). In the final case

(China), there are clear differences in coding criteria between EPR and V–Dem. While

EPR codes China as being largely inclusive (likely due to the demographic dominance of

the included group, ethnic Han Chinese), V–Dem codes it as being exclusive, due to the

fact that minority groups have little political representation in national politics in China.

4 Quantitative comparison of EPR and V–Dem vari-

ables

To further analyze the relationship between different methods of measuring identity-based

inclusion, I conduct exploratory regression analyses comparing the different variables.

More specifically, I regress both the V–Dem and EPR variables on their corollaries in the

other dataset (e.g. I regress the V–Dem measure of social inclusion on the EPR measure

of this concept, and vice versa). In this context, causal claims are clearly unwarranted.

Instead, the goal here is to determine how different measures correlate, indicating concep-

tual convergence. Along those lines, to assess the extent to which other factors unrelated

to identity may influence the measurement of identity-based inclusion, I also examine the

relationship between these measures and other political and demographic variables.

Specifically, I include measures of ethnic fractionalization and polarization which I

estimated using group-level data from the CREG dataset (The Composition of Religious

and Ethnic Groups (CREG) Project 2014). These measures provide insight into the

degree to which 1) the ecological presence of identity-based diversity and 2) the form

of this diversity influence the estimation of both the demographic presence of included

groups in the case of EPR data, or general inclusion in the case of V–Dem data. I use the

standard Herfindahl index to estimate country-level fractionalization; fractionalization

thus represents the odds that two randomly-selected individuals in a country would be

from different groups. Polarization in this context represents the degree to which a

country’s demographic situation differs from one in which there are two equally-sized

groups (a score of one, with a score of zero representing either a perfectly fractionalized
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or monoethnic society).

In addition to the variables related to ethnic identity, I also control for several other

factors that may influence coders’ perceptions of inclusion. First, measures of social

inclusion may be proxies for the degree to which a state generally respects its citizens’

rights. All analyses therefore include the V–Dem civil liberties index (Coppedge et al.

2017a), which measures the overall degree to which a state respects the civil liberties

of its subjects. Second, it is possible that measures of identity-based political inclusion

proxy general political inclusion. I therefore control of overall political inclusion using

the V–Dem measure Polyarchy, which is an aggregate measure representing the degree to

which a polity has achieved the ideal of electoral democracy (Teorell, Coppedge, Skaaning

& Lindberg 2016). Finally, I control for both population and GPD per capita, using data

from the Clio-Infra Project and the Maddison Project, respectively (Clio-Infra 2013, The

Maddison Project 2013). I also include year effects to control for general trends over time

with regard to inclusion.

All models use standard Bayesian linear regression, implemented with the statistical

program Stan (Stan Development Team 2018). Figure 4 presents the results of these

analyses, showing the posterior-predicted effect of changing from a low to high value of

given variable (i.e. a value under which 2.5 percent of the observations of the variable lie

to 97.5 percent), holding all other variables constant at their median. Points represent

the posterior median estimate, while horizontal lines represent 95% credible regions, a

Bayesian corollary of confidence intervals. The horizontal axis scale represents the scale

of the variable in question, or more precisely the variable’s 95% density range. “EPR”

and “V–Dem” represent the corollary of a given variable from the other dataset.

The EPR and V–Dem variables strongly correlate with each other, as expected given

that they purport to measure the same concepts. In the case of the EPR variable, the

V–Dem counterpart is the substantively strongest counterpart. However, the strongest

correlates of V–Dem variable are civil liberties and polyarchy, which indicates that V–

Dem coders are taking into account the overall level of inclusion in a polity when coding.

Interestingly, while identity-based polarization tends to be positively correlated with the

EPR variable, and fractionalization negatively correlated with these measures; the op-

posite is true for the V–Dem variable. That is, more polarized societies tend to have

higher levels of inclusion according to the EPR data, while they tend to have lower levels

of inclusion according to V–Dem. This result perhaps reflects the role of demographics

in the EPR data set: more groups mean that fewer groups are able to be included in

elite-level politics.
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Figure 4: Correlates of EPR and V–Dem data
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5 Aggregating V–Dem and EPR data

The analyses I have discussed thus far indicate that measures of politically-relevant iden-

tity that use the ethnic group as their unit of measurement (EPR) correlate strongly

with those that measure inclusion without groups (V–Dem). However, the relationship

between these measures also diverge in substantively important ways that cumulatively

indicate that measuring politically-relevant identity requires elements of both. A poten-

tial way to square this methodological circle would be to combine the measures using

latent variable models.

In recent years latent variable models have been used to measure a variety of impor-

tant social-scientific phenomena. In addition to extensive applications in the aggregation

of expert-coded data; prominent scholarship has used this methodology to measure con-

cepts including democracy (Treier & Jackman 2008, Pemstein, Meserve & Melton 2010),

media freedom (Solis & Waggoner 2020), power consolidation (Gandhi & Sumner 2020),

and accountability (Lührmann, Marquardt & Mechkova 2020). While some work has

discussed the applications of these models to create a “common space” between latent

measures of party and public ideology (Bakker, Jolly, Polk & Poole 2014), as far as I

am aware this project is the first to extensively use external data (EPR) to bridge an

expert-coded data set at the coder level (V–Dem).

Here I provide two different models for doing so. In the first, I use a relatively simple

latent variable model to aggregate the V–Dem and EPR data on political inclusion.

In essence, this strategy is similar to the standard V–Dem measurement model, which

treats every coder as having idiosyncratic reliability and scale perception parameters that

weights their contribution to the estimation of the latent concept—in this case, the level

of identity-based inclusion in a country year. In this simple model, the EPR variable

becomes another coder. However, unlike the V–Dem experts who only code several

countries at a maximum, the EPR “coder” codes every single observation in the data set,

providing the model with much more data to assess its reliability and scale perception.

In doing so, the model would ideally use the EPR data to correct for cross-national

differences in scale perception on the part of V–Dem experts, shifting their thresholds to

be more in line with the EPR levels based on demographics. As a result, the data would be

intrinsically more cross-nationally compatible, but also have an anchor in demographics

(which is important in-and-of itself).

The second modeling strategy extends the first, incorporating not just political in-

clusion data, but also data from V–Dem and EPR on social inclusion — the degree to

which residents of a country face identity-based discrimination. Both of these concepts

are treated as nodes in a hierarchical latent variable model, where data on overall ethnic

and religious diversity provide a prior estimate of exclusion in a society. While this ap-

proach is much more complicated than the first model, the greater complexity results in
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much more cross-nationally comparable and detailed data that are further aligned with

ethnic demographics.7

I discuss these approaches in turn. Note that I only estimate values for years in which

there are values from both datasets (1946-2017).

5.1 Identity-based inclusion as a latent variable

Figure 5 presents the conceptual framework for the latent variable that aggregates the

V–Dem and EPR inclusion variables (Stan code available upon request). Here the circle

represents the latent variable being estimated, and squares manifest variables. I represent

the V–Dem inclusion variable as an oval to indicate that it represents the scores of many

experts.

I enter the expert codings into the model using a modified version of the V–Dem

measurement model, which is itself a modified Ordinal Item-Response Theory (IRT)

model. Equation 1 presents the partial likelihood for this model.

Figure 5: Latent variable model for identity-based political inclusion

Identity-based
political inclusion

Political inclusion (V–Dem)

Included proportion (EPR)

...

Expert 1

Expert N

Pr(yctr = k) = Φ (τr,k − ξctβr) − Φ (τr,k−1 − ξctβr) (1)

y represents the ordinal coding (values 1, ..., 5) which expert r provides for country-

year ct; ξ is the latent value for this country-year, a priori distributed according to a

standard normal distribution. Each expert r has a unique reliability parameter β ∼
N(1, 1), restricted to positive values. This parameter represents the inverse of each

expert’s stochastic error variance, and in essence weights an expert’s contribution to

the measurement process based on the degree to which they covary with other experts,

conditional on their thresholds (τ). Experts who diverge to a greater extent from other

experts are penalized and thus contribute less to the measurement process. The model

accounts for DIF—idiosyncratic expert scale perceptions—through τ , k − 1 threshold

values that are specific to expert r. Thresholds determine the value over which ξ must

lie in order for an expert to provide a given scale item over the next lowest. Since τ

7Insofar as I am aware, this measurement strategy is also the first to pursue a hierarchical modeling
strategy at the expert-coding level.
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varies by experts, it accounts to some extent for variation in scale perception.8 For

computational reasons, I cluster thresholds about universal values, i.e. τr,k ∼ N(γk, .5),

where γk ∼ Cauchy(0, 2).

I add EPR data on inclusion to the model in a very similar fashion, as illustrated by

Equation 2:

Pr(yctr = m) = Φ (κm − ξctζ) − Φ (κm−1 − ξctζ) (2)

Specifically, I convert EPR data on inclusion into an ordinal variable based on the

proportion of a country’s population in a given year that is politically included, with

cutpoints at each .125 of the population.9 In this framework, the EPR data can be

conceptualized as an additional coder, who has their own idiosyncratic reliability, ζ ∼
N(1, 1), and idiosyncratic thresholds, κ ∼ Cauchy(0, 2). The key difference between the

EPR “coder” and a standard V–Dem expert is that the EPR data cover all observations,

while V–Dem experts generally code only 1-2 countries.10 As a result, the model is

able to estimate the EPR thresholds and reliability much more precisely than any of the

individual V–Dem experts, allowing the EPR data to bridge all observations.

In principle, this approach will allow the EPR data to weight estimates of identity-

based political inclusion in a society by bringing the idiosyncratic thresholds of V–Dem

experts into alignment with the EPR thresholds. For example, assuming that a V–Dem

expert covaries their codings in line with the EPR data, but systematically codes levels of

inclusion to be lower than would be suggested by their position relative to the EPR data,

the model will adjust their thresholds to be higher than they would be in the absence of

the EPR data.

As an additional note, the greater density of V–Dem coders will likely overpower EPR

data in terms of within-country trends: e.g. if all V–Dem experts for a country code levels

8V–Dem uses three different forms of data to gain leverage on idiosyncratic DIF: 1) anchoring vignettes
(King & Wand 2007, Pemstein et al. 2018), in which experts code hypothetical scenarios that require no
country-specific expertise: 2) asking experts to code multiple years for another country in addition to
their main country of focus; and 3) having experts code multiple countries for a single year-observation.
The third strategy has documented issues with inducing “jumps” in the data and I therefore remove these
codings in this analysis, instead allowing the EPR codings to facilitate bridging. Similarly, while V–Dem
proper clusters thresholds by main country coded, I only cluster thresholds about universal values.

9These cutpoints are arbitrary, but are intended to be a happy medium between overly-specific cut-
points (which are computationally difficult) and overly-broad cutpoints which would be imprecise. Or-
dinalization of the data is necessary because the data clearly do not follow a normal distribution, and
estimating them as following a Beta distribution substantially downweights their contribution to the
estimation process and creates massive computational issues.

10Following standard practice (Pemstein et al. 2018), I collapse observations into regimes, i.e. periods
in which no manifest variable (expert codings or EPR data) changed for a country. While the main
purpose of this approach is to avoid overly confident latent estimates, in practice this reduction strategy
reduces the number of observations individual V–Dem experts code, increasing the relative weight of the
EPR.
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of inclusion increasing, while EPR codes them as decreasing, the trends will likely reflect

V–Dem coding. However, in cases of disagreement among individual V–Dem experts, the

EPR data should in principle facilitate in adjudicating between the codings: all things

being equal, a V–Dem expert who disagrees with the EPR data with regard to country

trends should receive a lower reliability score relative to other experts agree with EPR.

5.2 Identity-based inclusion as a hierarchical latent variable

The first latent variable has the advantage of being relatively straightforward. How-

ever, Bayesian latent variable models are easily extendable to incorporate additional

information about a latent concept of interest. By incorporating additional information,

the model will provide more accurate and precise estimates of the concept, in this case

identity-based inclusion.

Here I provide a second model that incorporates additional information. Specifically,

the simple latent variable model of identity-based political inclusion becomes a node

within a larger hierarchical model. This hierarchical model also incorporates data on

another form of inclusion (“social inclusion,” or the degree to which identity is relevant

to state-sponsored discrimination in a country-year), as well as information about broader

ethnic demographics (both religious and ethnic fractionalization and polarization, as well

as the proportion of the population that belongs to a politically-relevant group). While I

discuss the different nodes in turn, Figure 6 provides a conceptual overview of the model.

Figure 6: Hierarchical latent variable model for identity-based inclusion
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5.2.1 Political inclusion

I model political inclusion exactly as in the the previous model, but instead of modeling

each latent value ξct as being distributed according to a standard normal distribution,

I model them as being normally distributed about a hierarchical prior value (θct) with

variance ω1 ∼ Cauchy(1, 1) (restricted to positive values), i.e. ξct ∼ N(θct, ω1). In

principle, this approach could allow this node to vary substantially from both its prior

and the other node; in practice, the high correlation between the different nodes reduces

the output to essentially one latent variable.

5.2.2 Social inclusion

While political exclusion provides a strong explanation for elite preferences over conflict

outcomes, it relies on a strong instrumentalist approach toward politics to explain why

this explanation would hold for the preferences of non-elite group members. That is, these

arguments assume that members of ethnic groups feel that their life prospects are linked

to those of other group members, and that elite political representation is therefore of

great importance—symbolic or otherwise—to individuals not engaged in politics. While

classic work on ethnic politics supports this assumption (Bates 1983, Horowitz 2000),

another body of literature argues that individual-level experiences are more salient to

popular political preferences (Gellner 1983, Chandra 2006, Chandra 2012). More specifi-

cally, this body of literature argues that social exclusion, or denying members of a group

opportunities available to members of other groups, leads to political conflict. These two

forms of exclusion are clearly correlated: Horowitz (2000) notes that political exclusion

often presages social exclusion. Given that both social and political inclusion theoret-

ically reflect draws from a similar underlying distribution (“Identity-based inclusion”)

including them in a hierarchical model is reasonable. In principle social inclusion esti-

mates could diverge substantially from political inclusion estimates, given that it has its

own vague variance parameter.

The V–Dem measure for social inclusion is similar to that for political inclusion, but

regards civil liberties as opposed to political power. Specifically, 1,145 experts provided

an ordinal response to the question “Do all social groups...enjoy the same level of civil

liberties, or are some groups generally in a more favorable position?” The five responses to

this question range from “members of some social groups enjoy much fewer civil liberties

than the general population” to “members of all salient social groups enjoy the same

level of civil liberties.” As with the question regarding political inclusion, this measure is

largely agnostic about the forms of social identities relevant to inclusion, focusing mainly

on the degree to which civil liberties are restricted based on social identities. In the

EPR data set, social inclusion (the population that is not “Discriminated’) represents

a subset of the larger political inclusion category in which the state actively persecutes
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Figure 7: Relationship between social and political inclusion
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group members, as opposed to group members simply lacking representation.

Both measures are also highly correlated with their political corollaries in their re-

spective datasets, as Figure 7 illustrates. This high correlation is strong evidence that

both social and political inclusion are drawn from a common distribution, though perhaps

with some variance.

I include social inclusion into the model using the same strategy as with political

inclusion: the latent social inclusion latent variable λct is distributed N(θct, ω2), with

with variance ω2 ∼ Cauchy(1, 1) (restricted to positive values).

5.2.3 Overall identity-based inclusion

Identity-based exclusion can only occur when there are multiple identity groups in a

society. As a result, I model the prior for both social and political inclusion as being

manifested in different statistics related to identity-based diversity: 1) CREG variables

representing both fractionalization and polarization for both religious and ethnic groups,

2) the proportion of a country’s population that is politically relevant (EPR). As with

the EPR data on inclusion, I ordinalize all of these variables at .125 intervals. I treat

each diversity measure p as having reliability parameters ζp ∼ N(−1, 1) (restricted to

negative values since all diversity variables have a negative relationship with the underly-

ing concept), and k thresholds ηpk ∼ Cauchy(0, 2). Again, note that since both forms of

exclusion are allowed to diverge from this prior (which is an overall estimate of politically-

relevant identity-based diversity), the model is not assuming that exclusion necessarily

follows from identity-based diversity. Instead, the assumption of the model is that ex-

clusion is more likely in certain demographic permutations of identity-based diversity.

Due to the iterative nature of the Bayesian algorithm, the relative weight of different

demographic statistics– and the level of overall identity salience—is also informed by the

estimates of political and social inclusion.
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5.3 Modeling

I estimate both models using RStan. They run 50 thousand iterations over eight chains,

with a burn-in of 25 thousand and thinning interval of 100. All parameters in both models

converged with Gelman-Rubin diagnostic values below 1.1.

In the case of the hierarchical model, the variance parameters reduced to values close

to 0. As a result, I only analyze the prior node values since the remaining two latent

variables are essentially identical.

6 Validation

I validate the data according to the framework set forth by Adcock & Collier (2001) and

McMann, Pemstein, Seim, Teorell & Lindberg (2016), focusing on content and construct

validation. In the context of this latent variable model, content validation involves three

steps. First, assessing the degree to which the model performs according to the theo-

retical assumptions that underpin its design by analyzing model parameters. Second,

assessing the implications of the model for its output relative to the manifest variables,

i.e. determining the degree to which the model diverges from its input variables, and

assessing the degree to which these divergences align with theoretical expectations. This

latter form of validation overlaps substantially with convergent/divergent analyses, which

I do not perform independently. Third, assessing the degree to which model output aligns

with theoretical expectations over cases. If the model performs as expected and model

output aligns with theoretical expectations and case knowledge, it has high content va-

lidity. The analyses indicate that the simple latent variable model performs worse than

the hierarchical model in this regard, but both models largely show high content validity.

Construct validity here involves assuming that identity-based inclusion is negatively

correlated with conflict onset—as a large body of literature argues—then assessing the

relationship between identity-based inclusion and conflict. A valid measure of identity-

based inclusion would show the theoretically-expected relationship with conflict onset.

The simple latent variable model largely fails this validation exercise, while the more

complicated model passes it with flying colors.

6.1 Content validation

To validate the content of the two latent variable models, I first assess the performance

of relative model parameters to see if they achieved the modeling objective of using the

EPR data to bridge the more nuanced—but potentially less cross-nationally comparable—

V–Dem data. Model parameter estimates indicate that both models have realized this

objective—the simpler model to a lesser extent than the more complicated model—a con-

clusion that comparing the model output to the original EPR and V–Dem data confirms.
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I then compare both cross-national patterns and within-country trends in the two

datasets, finding that output from both models appears to largely dovetail with both

modeling expectations and theoretical expectations.

6.1.1 Model performance

The goal of the latent variable models is to use the EPR data to bridge the V–Dem data

by anchoring the V–Dem data to politically-relevant ethnic demographics. The modeling

process should also allow both data sets to potentially correct errors in the other. To

assess whether or not the models work as intended, I focus on both parameter estimates

and their substantive influence on latent inclusion values.

In terms of parameter estimates, I focus on reliability and threshold parameters.

Reliability parameters influence the degree to which different data sources (EPR and

V–Dem coders) affect the latent parameter estimates. Threshold parameters determine

the degree to which different levels of a manifest variable differentiate between levels of

the latent parameter. Figure 8 illustrates the relationship between V–Dem expert and

EPR coding reliability and thresholds, across models and data. The top row illustrates

estimates from the simple latent variable that aggregates V–Dem and EPR data on

political inclusion. The bottom two rows illustrate this relationship for the hierarchical

model, with the middle row illustrating the relationship for political inclusion and the

bottom social inclusion. The left column superimposes the posterior median estimate of

EPR’s reliability as a vertical line over the distribution of V–Dem expert posterior median

reliability scores, illustrating the relative strength of the EPR estimate vis-a-vis V–Dem

experts in influencing latent parameter estimates. The right column superimposes the

posterior median threshold estimates for the EPR manifest variables over the distribution

of thresholds for V–Dem experts, illustrating the latent value estimates over which the

different sources of data differentiate.

Focusing first on the top row, the EPR posterior median reliability score is substan-

tially lower than the average V–Dem expert score (median estimates of .57 vs. 1.15),

which would indicate that the EPR estimates of political inclusion substantively influ-

ence country-year estimates of political inclusion to a lesser extent than V–Dem experts.

However, the posterior median is a somewhat misleading statistic in this context because

there is much higher measurement error in the estimates of V–Dem expert reliability. On

average, V–Dem expert reliability scores have a standard deviation of .57 over posterior

draws; the EPR reliability has a standard deviation of .05 over posterior draws. As a

result, though the EPR data influence the latent variable estimation process to a lesser

extent than individual V–Dem experts, the influence is much more consistent over draws

from the posterior distribution.

In terms of the thresholds, the EPR thresholds are largely concentrated about the

23



Figure 8: Latent variable reliability and threshold comparison
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first and second thresholds for V–Dem experts. This relative positioning of thresholds

indicates that the EPR political inclusion variable faciliates the differentiation of country-

years with relatively low inclusion, while poorly differentiating relatively high inclusion.

This result stands to reason given the different foci of the V–Dem and EPR data. While

the EPR data would code a country where only a small minority is excluded as being

relatively inclusive based on the demographic strength of the included population, V–

Dem experts might code this case as still being exclusive based on the severity of the

exclusion.

The middle row shows a similar pattern in the relationship in the case of the hier-

archical model of identity-based inclusion. The EPR data largely do not differentiate

between relatively politically-inclusive country years, but do differentiate between rela-

tively politically-exclusive observations. This result is even more pronounced in the case

of social inclusion (bottom row), where the EPR data largely differentiates only between

very exclusive country-years (about the lowest V–Dem threshold distribution). This re-

sult is perhaps understandable given the very strict coding criteria for discrimination

in the EPR project (i.e. politically included populations cannot face discrimination by

definition), which would allow countries that have high levels of discrimination to still be

coded as non-discriminatory.

Finally, in the hierarchical model the EPR data have much higher reliability scores

than in the simpler latent variable model. This result is likely due to the increased

weight given to ethnic demographics via the prior. Figure 9 illustrates the reliability and

threshold parameter estimates for the hierarchical model, excluding estimates for V–Dem

experts. I flip the scales on all variables save Political (EPR) and Social (EPR) inclusion

to better illustrate their relationship to the latent variable; all variables with flipped scales

in fact have negative correlations with overall inclusion. The highest threshold for ethnic

fractionalization (E.Frac) thus becomes the value over which the latent variable must fall

to belong to the lowest fractionalization category.

Both political and social inclusion parameters receive the highest reliability values,

which follows from the fact that they are the most highly correlated with the concept

being estimated (as well as the V–Dem codings). Ethnic fractionalization and polarization

(E.Frac and E.Pol) receive high reliability estimates relative to religious fractionalization

and polarization (R.Frac and R.Pol) which again follows from the greater focus on ethnic

identities relative to religious identities in the data. Finally, the proportion of a population

that belongs to a “politically relevant” identity group has a lower reliability than the other

ethnic variables, which is perhaps evidence that inclusion and broader demographics (i.e.

polarization and fractionalization) are more relevant to the latent concept.

Turning to the threshold estimates, Figure 9 illustrates that measures of fractionaliza-

tion and polarization — both ethnic and religious — tend to be better at differentiating

high levels of the latent concept than the demographic measures of inclusion themselves
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Figure 9: Hierarchical model reliability and threshold parameters
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(EPR data on social and political inclusion). This result dovetails with the previous

comparisons of the EPR measures and the V–Dem expert thresholds. The V–Dem data

indicate that some levels of exclusion are possible even when most of a country’s popu-

lation is represented in elite politics. These analyses indicate that the difference between

high and very high levels of inclusion is informed by the degree to which a country is

(not) fractionalized or polarized. Countries that have very low polarization and fraction-

alization are thus the most likely to be inclusive, potentially because they are closest to

being monolithic in terms of ethnic-type identities.

Figure 10 illustrates the implications of these model parameters for country-year es-

timates of inclusion. All four cells show a scatterplot of the posterior median estimates

from the original V–Dem political inclusion indicator (vertical axis) and the posterior

median estimates from the simple latent varible model (left cells) and the posterior me-

dian estimates of the more complex hierarchical model (right cells). The top row divides

the estimates by the level of political inclusion from the EPR project, while the bottom

row divides the estimates by levels of ethnic fractionalization.

Focusing first on the top row, it is clear that the inclusion of EPR data into the

estimation process has altered country-year estimates in both models: data with low

values of demographic (EPR) inclusion have systematically lower point estimates relative

to the original V–Dem data. However, it is also clear that the hierarchical model allows

the EPR data to much more starkly differentiate the estimates of identity-based inclusion,

with estimates for each level of demographic inclusion being systematically lower than

estimates for the next-highest level. This result confirms the insight from the model

parameter analyses: the hierarchical model incorporates the EPR data into the estimation

process to a greater extent, in line with the goals of the modeling enterprise.

The bottom row has two functions. In the case of the simple latent variable model of

political inclusion (left), ethnic fractionalization plays no role in the estimation process.

As a result, there should be no systematic differences based on ethnic fractionalization

between the V–Dem and latent variable posterior median estimates, except insofar as

ethnic fractionalization is correlated with the EPR inclusion data that are included in

the estimation process. In contrast, given the high reliability of the fractionalization

variable in the hierarchical model, we would expect there to be strong differentiation

between the V–Dem and latent variable posterior median estimates based on levels of

ethnic fracitionalization, especially at particularly low levels of fractionalization. Indeed,

both of these relationships are visible in the data: there is little systematic difference

between the V–Dem measure and the latent estimates from the simple model based on

ethnic fractionalization, while there are clearly observable differences in the comparison

to the hierarchical variable. This validation exercise confirms that the hierarchical model

estimates of identity-based exclusion are informed to a noticeable extent by demographic

data in addition to the EPR data.
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Figure 10: Relationship between latent variable and input data
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6.2 Across- and within-country comparisons

To analyze whether these modeling strategies are actually of substantive importance,

I provide both cross-national analyses of data from 2017 (the most recent year in the

dataset) and return to the analysis of longitudinal trends in the BRICS countries and the

United States. In principle, these analyses facilitate content validation by facilitating an

assessment of the degree to which the model estimates align with substantive knowledge

of identity-based exclusion around the world and within countries. In future iterations of

the project there will be a more extensive discussion along these lines.

Figure 11 illustrates relative levels of identity-based political inclusion across all coun-

tries in the year 2017, focusing on 1) the posterior median estimates from the simple latent

variable model, 2) the demographic inclusion estimates from EPR, and 3) the original

V–Dem political inclusion estimates. I scale the V–Dem and latent variable estimates to

a 0-1 scale using the CDF of a standard normal distribution to facilitate comparison with

the EPR data; horizontal lines represent the 90% credible region about the latent variable

estimates. Higher values represent greater identity-based political inclusion, lower values

the opposite.

Several aspects of this figure warrant discussion. First, the V–Dem indicator and the

latent variable estimates track each other closely, with most V–Dem estimates falling

within the 90% credible regions from the latent estimate. However, there are cases of di-

vergence: for example, Kazakhstan has a much lower latent estimate of political inclusion

than its V–Dem corollary. This result is likely due to the fact that it has a relatively low

demographic (EPR) inclusion estimate. Second, while comparing direct estimates from

EPR and the latent variable estimate is difficult given the ordinalization of the EPR data

in the estimation process, general trends are observable. Most clearly, while there are

many cases of perfect demographic inclusion in countries with relatively high levels of

estimated latent political inclusion (right cell), there are few in cases with low inclusion.

The exceptions to the latter rule are generally confined to cases of great discrepancy

between the V–Dem and EPR data (e.g. aforementioned cases like North Korea and

Qatar). In general, this analysis yields a conclusion in line with those from the model

parameter analyses: the model is allowing the EPR data to weight the V–Dem data to

some extent, but the V–Dem data clearly overpower the EPR data in many cases.
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Figure 12 compares 2017 country-year estimates from both the simple latent variable

model of identity-based political inclusion and the more complicated hierarchical model

of overall identity-based inclusion. Again, horizontal lines represent 90% credible regions

and points posterior medians. Unsurprisingly given the previous analyses, point estimates

from the two latent variables are clearly highly correlated. However, there are cases of

relatively substantial divergence: for example, Haiti is estimated to have much lower

inclusion in the simple model than in the hierarchical model. Such discrepancies may

be either due to differences in levels of social and political inclusion in the two countries

or, perhaps, the fact that demographics have greater weight in the hierarchical analysis.

Haiti has relatively low demographic diversity, which likely increases its score in the

hierarchical model.

Also of note are the much tighter credible regions for the hierarchical model; this is

likely due to the additional data available to this the model.

For a final step for content validation, I return to longitudinal case studies using the

BRICS and USA as examples in Figure 13.11 Focusing on the latent variable models,

it is clear that output from both models generally shows similar trends. There are two

important caveats to that statement. First, while the trends are similar, the estimated

levels of relative inclusion often diverge substantially, with the hierarchical model gen-

erally estimating these cases to be less inclusive than the simpler latent model. These

lower values likely reflect both the lower social inclusion in these countries vis-á-vis po-

litical inclusion as well their relatively high identity diversity. Second, the case of China

shows both dissimilar trends and levels over the two latent variable estimates. Again, this

result is likely attributable to China’s largely Han Chinese population, which increases

the estimated level of inclusion in the hierarchical model; the trends in decreasing inclu-

sion as estimated by the hierarchical model is likely due to increasing social exclusion of

minorities in recent years, most prominently the Uighurs.

11Latent variable estimates converted to a zero to one scale using the CDF of a normal distribution.
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Figure 13: Time series for political inclusion
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Lines represent local regression estimates and corresponding uncertainty; they do not
represent measurement uncertainty about estimates.
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6.3 Construct validation: Analyses of civil conflict onset

The content validation in the previous section indicates that the latent-variable models—

in particular the hierarchical model—successfully merge the V–Dem and EPR data, with

demographic information bridging the V–Dem data. However, the degree to which this

merging is worthwhile remains unclear. While the cross-national and within-country

analyses provide some face validity for the strategy, a concept as loaded as identity-based

inclusion means that readers may very well interpret the validity of the measures differ-

ently based on their idiosyncratic understandings of identity and inclusion. Construct

validation allows me to assess the degree to which the latent variable estimates evince a

theoretically-expected relationship with outcomes of interest. More valid measures show

a relationship that is in line with the theoretical expectations. I conduct construct val-

idation by analyzing the relationship between the latent variable posterior medians and

civil conflict onset.

As previously discussed, many scholars hold that there is a relationship between ex-

clusion and civil conflict: as identity-based inclusion decreases, the probability of conflict

onset increases. Assuming this hypothesis is correct, an accurate measure of identity-

based inclusion would predict civil conflict onset. Equally importantly given concerns

about the cross-national comparability of data on identity-based inclusion, higher levels

of exclusion should predict conflict both across- and within-countries. I therefore analyze

data with both country and year random and fixed effects.

Since the goal of this analysis is to validate the data without any pretensions for causal

inference, I have endeavored to estimate relatively straightforward and inoffensive models.

Specifically, I run linear probability models that have as an outcome the UCDP/PRIO

indicator of conflict onset. All models also include a cubic spline for the number of years

since a country entered the data set or the last cessation of hostilities. I remove cases of

ongoing conflict.

I initially analyze the relationship between four lagged indicators of inclusion inde-

pendently without controls, including both the EPR and V–Dem indicators of political

inclusion for the sake of comparison with the latent variable estimates. I rescale all latent

variables from zero to one for the sake of comparing the correlation magnitude. In an

additional four models I include controls—V–Dem Polyarchy, ln(GDP per capita) and

ln(Population)—to assess robustness. I lag all relevant right-hand side variables by one

year. Table 2 presents results from a model with country and year random effects, while

Table 3 presents results from a model with country and year fixed effects.
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The results from linear probability models that include country and year random

effects (Table 2 presents) provide strong evidence that the hierarchical latent variable

model has the highest construct validity among the different measures of identity-based

inclusion. When estimated without controls (Models 1-4), all indicators of inclusion

save the posterior median from the simple latent variable model show the theoretically-

expected significant and negative relationship with conflict onset. The fact that the simple

latent variable model of identity-based political inclusion does not show this relationship is

evidence that this indicator does not capture this concept as fully as the other indicators.

On the other hand, the estimates from the hierarchical latent variable model show the

relationship with conflict onset with the highest magnitude, which is strong evidence of

its construct validity. Equally importantly, this indicator is the only one that is robust to

the addition of controls (Models 5-8). This result indicates that the hiearchical measure

of inclusion has the highest construct validity when comparing levels of inclusion cross-

nationally.

The results from Table 3 provide further evidence of the construct validity of the

hierarchical latent variable model estimates of inclusion. In the context of country and

year fixed effects, the hierarchical latent variable model of identity-based inclusion shows

the substantively strongest relationship with conflict onset, and is the only indicator that

is robust across model specifications.

7 Conclusion

How to best measure politically-relevant identity is an essential question in political

science. The most prominent approach—epitomized by the EPR project—is to measure

the degree to which politically-relevant ethnic groups are excluded. This approach is a

relatively blunt measure of the concept in that it has difficulties accounting for either inter-

and intra-ethnic variation in inclusion, as well as fine-grained changes in inclusion over

time. An alternative approach—epitomized by the V–Dem project—is to measure the

latent level of identity-based inclusion in a society, without regard to specific groups. This

approach is perhaps more nuanced, but only indirectly measures ethnic demographics,

which are of clear importance to social-scientific outcomes.

In this paper, I compare and contrast these two approaches and argue that, in many

ways, they are complementary. Moreover, I propose two latent variable models that ag-

gregate these two types of data. One model is a relatively straighforward ordinal IRT

model of identity-based political inclusion that treats the EPR data as fully-bridged and

cross-nationally comparable coder. The other model takes a more complicated hierar-

chical latent variable modeling approach, incorporating additional data regarding both

identity-based social inclusion, as well as general identity demographics. In principle,

both models would allow the EPR data to anchor V–Dem experts to politically-relevant
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ethnic demographics, increasing cross-national comparability in a substantively impor-

tant way. Content validation exercises indicate that, while both models are successful in

this regard, the hierarchical model incorporates demographics to a much greater extent.

Construct validation indicates that this greater incorporation of demographic data yields

estimates that more fully align with important social-scientific theory.

In addition to providing data of potentially great use to scholars interested in measur-

ing identity-based inclusion, I have also designed these models to provide a baseline for fu-

ture future modifications. Adding additional data regarding identity-based diversity (e.g.

from AMAR Birnir et al. (2014) or Livny (ND)) would provide finer-grained measures

of identity salience. Incorporating additional data about other forms of identity-based

inclusion (e.g. from the exclusion survey that began in V–Dem v9) would only require

adding another node to the model. Finally, for the sake of simplicity, I have restricted

the time series to dates with perfect coverage across data sources; in principle, using

an approach such as that which Fariss (2014) uses to measure human rights across time

would allow the time series to extend the full length of the V–Dem data (i.e. to 1900).
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Hunziker & Luc Girardin. 2015. “Integrating Data on Ethnicity, Geography, and

Conflict: The Ethnic Power Relations Data Set Family.” Journal of Conflict Reso-

lution 59(7):1327–1342.

Wimmer, Andreas, Lars-Erik Cederman & Brian Min. 2009. “Ethnic Politics and Armed

Conflict: A Configurational Analysis of a New Global Data Set.” American Socio-

logical Review 74(2):316–337.

41




